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Abstract 
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– the development of better technologies embodied in new products – does not 
respond strongly to energy price variations. 

 

Keywords: Induced Innovation; Energy Efficiency; Electricity Prices; 
Multiple Imputations; Product entry and exit. 

JEL Classification: D12, L68, Q41, Q55. 

* Corresponding author. Address: CERNA – Centre for industrial economics, 
MINES ParisTech, 60, boulevard St Michel, 75006 Paris, France. E-mail: 
matthieu.glachant@mines-paristech.fr. Ph: + 33 140519229. 



 
 

2 
 

1. Introduction 

The influence of energy prices on green innovation has attracted a lot of 

attention in recent years. In particular, empirical studies, pioneered by Newell, 

Jaffe, & Stavins (1999), have estimated the impact of energy price variations 

on the level of innovation in various sectors and technology fields: e.g. the 

auto industry (e.g.  Aghion et al., 2016; Crabb & Johnson, 2010), energy 

conservation (Popp, 2002; Noailly, 2012) and renewable energy (Diaz Arias & 

van Beers, 2013). 

Policy relevance is the primary reason for this interest. The production and use 

of energy strongly contribute to increasing greenhouse gas emissions. Meeting 

climate policy targets – in particular, the commitments formalized in the Paris 

Agreement to limit global warming below 2 °C above pre-industrial levels – 

require drastic emission cuts that are only feasible with the development and 

diffusion of new energy technologies. Against this background, assessing the 

impact of energy prices on innovation is useful to predict how price-based 

policy instruments like emissions taxes and carbon markets can influence the 

pace of climate-friendly innovation. These investigations contribute to a 

broader literature on the relationships between green innovation and public 

regulation (for a survey, see Popp, Newell, & Jaffe, 2010). 

Previous papers have primarily relied on patent data for measuring the level of 

innovation. Patent data have advantages and weaknesses (for a discussion, see 

Griliches, 1990). On the positive side, they are easily available; they provide a 

wealth of information on both the nature of the invention and the applicant; 

they can be disaggregated into specific technological areas, a particularly 

useful characteristic when conducting sector- or technology-specific analyses. 

On the negative side, patents are a better measure of invention than they are of 

innovation. Schumpeter (1939) already makes the argument that many forms 

of innovation can occur without the production of any scientific novelty. On 

the other hand, the economic reception of an invention is uncertain. It follows 
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that the future economic value of individual patents is heterogeneous: Many 

patents have very low value, and as a consequence the number of patents does 

not perfectly reflect the value of technological innovation. Furthermore, all 

inventions are not patented because some inventors may prefer secrecy to 

prevent public disclosure of the invention imposed by patent law, or to save 

the significant fees attached to patent filing; the propensity to patent differs 

across sectors and technologies. 

This paper takes a different approach by looking at the result of innovation. 

Using product-level data from the UK refrigerator market, we examine the 

impact of electricity prices on the characteristics of the products actually sold 

on the market and we derive the impact on the energy consumption of sold 

appliances. In comparison with patent-based studies, the main advantage of 

the approach used in this paper is that it produces estimates of the impact of 

energy prices on the level of energy use induced by product innovation, which 

matters more for policy makers than the count of new patents.1 Doing so, we 

actually come closer to the strategy adopted by Newell, Jaffe, & Stavins 

(1999) in their seminal study. However, their conceptual framework is 

different, which we clarify below.2  

Looking at energy efficiency improvements in the white goods sector has 

strong policy relevance. Domestic appliances are responsible for a large share 

of the energy consumed by households: 16% of energy consumed in the 

residential sector and more than 60% of residential electricity consumption in 

2009 (Enerdata, 2010). At the same time, there is high potential for energy 
                                                 

1 We restrict our analysis to product innovation. Other forms of innovation, such as process 
innovation (i.e. reductions in the cost of producing energy efficient appliances), are beyond 
the scope of this study. 
2 Newell, Jaffe, & Stavins (1999) use data from the Sears catalogue and other publicly 
available information on 735 room air conditioners, 275 central air conditioners and 415 gas 
water heaters offered for sale between 1962 and 1993. They directly look at product attributes 
of commercialized products to assess the magnitude of induced innovation. Our method relies 
on a similar panel of appliances. Our method, explained in section 2, is however different 
from theirs. 
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efficiency improvements; for example, an energy efficient refrigerator 

consume up to five times less energy than an energy inefficient one. 

Methodologically, our approach starts from Lancaster (1966)’s view that, at 

any point of time, the refrigerator market includes many differentiated models, 

each being a particular combination of product characteristics (e.g. capacity, 

energy consumption, height, colour). Product innovation amounts to the 

launch of new models that substitute older ones. We then take advantage of 

the fact that we observe the dates of launch and exit of each model sold in the 

UK market between 2002 and 2007. We use a dynamic panel-data probit 

model (Wooldridge, 2005) to identify the impact of energy prices on the 

probability that a given model is commercialized.  

This method faces two main econometric challenges. The first one results 

from the inclusion of refrigerator prices as a control variable in the product 

offer equation. This creates a simultaneity problem: A high price arguably 

increases the incentives to launch the product, but new products also modify 

the market equilibrium and thus the prices. We solve this issue by adopting a 

strategy inspired by Hausman et al. (1994), i.e. using the price of similar 

products as instrumental variables.3 The identification assumption is that 

prices in outside markets reflect underlying product cost and that stochastic 

market-specific factors are independent from those observed in the refrigerator 

market. The second challenge is that information on the price of refrigerator 

models that are not commercialized is not observed. We circumvent this 

problem by predicting prices for non-commercialized products by using 

multiple imputations. This gives unbiased standard errors when prices of non-

commercialized products are used.4 

                                                 

3 Hausman's approach is slightly different, but the logic is similar. He considers the price of 
the same product in different geographical markets.  
4 On the other side, refrigerators have some advantages compared to other energy-using 
products (e.g. cars, washing machines, dish washers) when studying how market outcomes are 
affected by energy prices. For example, refrigerators tend to be used with the same intensity at 
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In the last stage of the analysis, using the econometric estimates, we produce a 

micro-simulation in order to calculate the impact of a 10% energy price 

increase on energy consumption of the models commercialized. We find that a 

10% increase in the price of electricity reduces the energy consumption of 

commercialized products by 2%. A large share of this reduction is explained 

by a reduction of freezing space. We also show that the exit of energy-

inefficient products contributes more to the reduction than the launch of new 

energy-efficient models. These findings suggest that innovative improvements 

in energy efficiency – the development of new energy-saving technologies 

embodied in new products – is not the primary response to energy price 

increases. 

The remainder of the paper is structured as follows. Section 2 explains our 

modelling approach, detailing the challenges associated with the simultaneous 

price and commercialization decisions and unobserved prices of non-

commercialized products. Section 3 describes the data. Section 4 presents the 

econometric results and we include the simulation of how product innovation 

is affected by an increase of the electricity price in Section 5. Section 6 

concludes.  

2. Model 

To study product availability, we focus on the probability that a product is in 

the market. Thus, we jointly consider product entry and exit.5 Our dependent 

variable is ���
∗  with ���

∗ = 1 if the product j is in the market in year t and zero 

otherwise. As our base specification, we use the following probit model: 

                                                                                                                                

all times, i.e. energy consumption is fixed. This implies that intensity of use is hardly affected 
by the energy price. 
5 An alternative approach is to analyze product entry and exit separately with, for example, a 
survival model. This would drastically reduce the amount of information actually exploited 
and create censoring problems as we have a time dimension which is too short for survival 
models. 
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                            ��� = �	
�����
∗ + ���� + ���� + �� + ���,                         (1) 

where �(∙) is a cumulative normal function with zero mean and a variance 

equal to one and 
, � and � are parameters to be estimated. We adopt a 

dynamic specification with �����
∗  as an independent variable in order to control 

for path dependence: launching a product is costly, which creates persistence. 

In the data, 44% of the products available at time t -1 are also available at time 

t, whereas only 21% of the products that are not available at t -1 can be found 

in the market at time t. 

The main variable of interest is obviously the annual electricity cost ���. It is 

the product of model j 's energy consumption (in kWh) and the electricity 

price, which varies over time. An increase in ��� is expected to decrease the 

dependent variable ( � < 0) as it corresponds to a negative demand shock on 

the refrigerator market. 

Our baseline econometric specification uses contemporaneous energy prices to 

compute running costs. Yet, the energy costs of an appliance will depend on 

the future electricity prices over the lifetime of the appliance. If expectations 

about future electricity prices are different from current prices (e.g. as 

suggested by Panzone, 2013), then we may not be employing the right metric 

to analyze the effect of energy prices on product entry and exit. 

In fact, using contemporaneous energy prices is equivalent to assuming that 

consumers think that electricity prices follow a random walk. While there is 

support for this assumption (Ito, 2014),6 we can alternatively produce 

electricity price expectations based on the futures prices of the wholesale 

electricity market. The general idea behind using futures is that these 

constitute expectations about future prices from well-informed actors in the 

                                                 

6 He finds that consumers are more responsive to average prices than to marginal electricity 
prices or to expected marginal electricity prices. 
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electricity markets. This is done in Appendix D and results are very similar to 

our baseline specification. 

We also include the refrigerator price ���, which is an obvious driver of 

product availability. However, its impact is difficult to predict. On the one 

hand, producers have incentives to keep products with high markups in the 

market, and thus high prices. On the other hand, an increase in the refrigerator 

price hurts demand, and thus reduces sales.  

The equation includes time dummies and product fixed effects, τ� and �� 

respectively. Product fixed effects are particularly important because 

refrigerators are differentiated goods, with several characteristics that are not 

observed in the data (e.g. product design, electronic readout) and that are 

likely to be correlated with energy performance (and thus ���).  Fixed effects 

offer perfect controls as these attributes are product-specific and time-

invariant. 

We estimate this dynamic probit model using the method suggested by 

Wooldridge (2005). The correlation between the product fixed effect �� and 

the initial value ��,�
∗  is made explicit. We formulate that as: 

                                             �� = �� + �����
∗ + ���� +  � .                                     (2) 

�� is the row vector of all non-redundant explanatory variables in all time 

periods. It includes time-invariant product features (e.g., size or energy 

efficiency rating) but also the purchase price of products at each time period 

(i.e., the price in 2002, 2003..., 2007). To avoid multicollinearity, we exclude 

year dummies and only include the electricity cost for one year because they 

are calculated from the annual energy consumption of model j, which is a 

product feature that is given and does not vary over time. �� and �� are 

parameters, �� is a vector of parameters and  � is a random effect such that 

 �|(���
∗ , ��) follows a normal distribution.  
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Substituting eq. (2) into eq. (1) leads to an estimable random-effects probit 

model with ���
∗  and �� included as explanatory variables: 

      ��� = �	
�����
∗ + ���� +  ���� + �� + �����

∗ + ���� +  � + ���      (3) 

The method by Wooldridge (2005) estimates a fixed effect dynamic probit 

model under the assumption that  � is normally distributed. To ensure that the 

results are robust to model choice, we also use a simpler fixed effect logit 

model with no dynamic component, which is displayed in Appendix A. Both 

the dynamic probit and the fixed effect logit model find statistically significant 

and negative impacts of energy costs on product commercialization. 

First-stage price equation 

The inclusion of the refrigerator price in eq.(3) poses two problems. The first 

is that the electricity cost ��� is likely to affect ���. Remember that an 

electricity price increase amounts to a negative demand shock on the 

refrigerator market and less demand leads producers to reduce their prices. 

Overall, the electricity cost potentially affects product availability both 

directly – as measured by coefficient � in eq.(3) – and indirectly through 

refrigerator price adjustments. A full evaluation of the impact of electricity 

prices thus requires us to estimate the price equation. Second, the product 

price could be endogenous because commercialization and prices are jointly 

determined in market equilibrium.  

We use a control function approach to deal with the first two problems: we 

regress prices on a series of instruments and the electricity cost and then use 

predicted prices when estimating the probit model. Cost shifters are good 

candidates as instrumental variables. They obviously influence the refrigerator 

price as this price is the sum of the unit production cost and the markup. They 

are also exogenous: production cost shocks have no direct influence on the 

decision to launch or remove a product from the market when controlling for 

the refrigerator price as done in Eq. (3). We use the instruments developed by 
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Cohen, Glachant and Soderberg (2017) and refer to Appendix B for a full 

description. In short, we exploit variations provided by the price of similar 

products in two outside markets: the upright freezer market (i.e. excluding 

chest freezers) and the washing machine market. Conceptually, we use the 

same strategy as Hausman et al. (1994).7 Freezer and washing machines are 

sold outside the refrigerator market, and thus to different consumers. This 

implies that taste shocks on these markets are less likely to be correlated with 

those experienced on the refrigerator market. This provides the basis for the 

exclusion requirement: the instruments will not be correlated with demand 

shocks on the refrigerator market.8 However, these products share similarities 

with refrigerators because they are also large domestic appliances. Cost shocks 

that affect the price of freezers and washing machines – e.g., an increase in 

steel price – are likely to be correlated across these markets.9  

The difficulty with this approach is to match the prices of freezers or washing 

machines to the price of a specific refrigerator. Our solution is to use two 

product characteristics that are common to refrigerators, freezers, and washing 

machines, i.e. capacity and whether the appliance is built-in or freestanding. 

Using a hedonic pricing model, year-specific implicit prices for these two 

characteristics are estimated on product-level data for the UK freezer and 

                                                 

7 Hausman et al. (1994) aim to identify cost-shifters when data on costs is missing. It uses 
information on the same products, but sold in different markets, to construct instruments. The 
idea is that demand shocks on different markets will not be correlated, whereas supply shocks 
are since we are talking about the same products, commercialized by multi-country firms. The 
idea behind our instrumentation strategy is similar: demand shocks on different product types 
should not be correlated, whereas these products are manufactured with similar material. 
8 There are a few elements that will substantially limit the correlation between demand shocks 
across these products. In particular, whereas everyone has a refrigerator at home, many 
households never buy a freezer and some households do not have a washing machine. 
Furthermore, these appliances have different lifetimes (washing machines have the shortest 
lifetime, freezer the longest lifetime) and the fact that an appliance breaks down largely 
explains the decision to buy a new appliance. Therefore, purchasing decisions are rarely 
performed at the same time. 
9 See the robustness checks in Cohen, Glachant and Soderberg (2017), which demonstrate that 
these instruments are strong predictors of the price of refrigerators. 
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washing machine markets between 2002 and 2007, with data obtained from 

GfK.10 This technique yields year-specific averages for subcategories of 

freezers and washing machines, which are matched with the same 

subcategories of refrigerator-freezers and refrigerators. For example, the 

implicit price of smaller than average built-in freezers at time t is used as an 

instrument for the price of smaller than average, built-in refrigerators and 

refrigerators-freezers at time t.11 

In the end, we fit the following price equation: 

ln	��� − (� = )�*� + +�,�� + +-.�� +  � + �� + /�� 

The dependent variable is a transformation of the product price with ( =

27.52 so that the predictions can be used to compute multiple imputations – 

we provide detailed explanations below when presenting how we deal with 

missing price values. ,�� is the implicit price in year 2 of the washing machine 

of which size is similar to product j. .�� is the equivalent price for freezers. We 

also include product fixed effects  �  and time dummies ��. /�� is the 

disturbance term. 

Missing information on product prices 

As mentioned previously, information on ��� is missing in the data for all 

periods when product j is not available in the market (���
∗ = 0). We therefore 

                                                 

10 The hedonic approach is described in Appendix B. We run fixed effect regressions and 
interact specific product features with time dummies to capture shocks on the implicit price of 
these features. The regression therefore accounts for time-constant unobservables such as 
brands and stores in which the products are sold. Furthermore, the hedonic regression includes 
brand-specific time trends that control for the general development of brand-specific 
marketing strategies. 
11 The hedonic regressions include brand-specific time trends to control for brand-specific 
marketing strategies and image. Therefore, variations of the hedonic prices of the two 
characteristics do not capture changes in brand image, a feature that could be correlated with 
the sales of refrigerators with the same brand name. In addition, and to ensure that our 
estimation is not biased by changes in the retail sector, trade brand products have been 
withdrawn from the samples of freezers and washing machines used to estimate the implicit 
price of the two attributes. 
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need to make an assumption about the purchase price of products in years 

when they are not available in the market. For all the products that are not 

commercialized at time t, one could perform a regression on observed 

refrigerator prices (when ���
∗ = 1) and produce out-of-sample predictions for 

��� when ���
∗ = 0. However, this approach would underestimate the standard 

error of the estimated coefficients.  

To solve this problem, we perform multiple imputations for each missing ���, 

a technique that provides unbiased standard errors for the estimated 

parameters (Rubin, 1987). The procedure is as follows. First, we look at the 

distribution of refrigerator prices ��� and perform a transformation on ��� so 

that the transformed refrigerator prices follow a distribution close to normal.12 

The transformation that we use is: 

                                                 �3�� = ln	4���5 − (�                                                (4) 

�3�� are transformed prices, ( is a parameter that ensure that the skewness of 

the distribution is close to 0, which is one property of normal distributions. In 

our case, we set ( =  27.52. 13 Then, we run a fixed effect linear regression on 

transformed prices: 

                                  �3�� = ℎ� + a��� + b:�� + ;� + <��                                   (5) 

where ℎ� is the product specific fixed effect, ;� the time fixed effect, = is a 

parameter and <�� is the random error term. Importantly, :�� corresponds to 

the vector of instruments used to control for the commercialization-price 

endogeneity and > is a vector of parameters. Using the instruments :�� in the 

imputation process allows us to control for the endogeneity on imputed 

                                                 

12 Such multiple imputation method is known to be biased if applied to non-normally 
distributed variables (Rubin, 1987). 
13 We have performed the Skewness and Kurtosis test on �3�,�. The p-values of this test is 0.99 
with ( = 27.52. Thus, the normality hypothesis of �3�� is not rejected.  
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refrigerator prices. The predictions obtained from this regression are denoted  

�̂��. 

Based on the results of the linear regression, we create 25 imputed prices for 

each missing value of ���. Let m denote the imputation number, then each 

imputed transformed price of product j at time t is given by: 

�3��
@ = �̂�� + <��

@ 

where <��
@ is a randomly assigned and normally distributed error term 

corresponding to imputation m for product j at time t. Next, we use eq. (4) to 

calculate the value of the imputed prices ���
@ from their transformations �3��

@. 

This step gives imputed values ���
@ with a distribution that is close to the 

distribution of observed prices. Once the ���
@ values have been obtained, we 

estimate eq. (3) as many times as there are imputations and then compute 

coefficient values and standard errors that account for the uncertainty of the 

value of ��� when ���
∗ = 0. 

The technique described above also solves the endogeneity problem of 

unobserved prices. In parallel and as previously explained, we also control for 

the endogeneity of observed refrigerator prices: we run a linear regression 

similar to eq. (5) and extract predicted values for observed prices that we use 

later in the dynamic probit model. 

3. Data 

We use product level data from 2002 to 2007 from the refrigerator market in 

the UK collected by the market research company GfK Retail and Technology 

(received by the Department for Environment, Food and Rural Affairs). The 

data includes detailed annual information on refrigerators and combined 

refrigerators-freezers sold in the UK. We identify products by brand name and 
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series numbers.14 If not available, we rely on available information on product 

features (width, height, total capacity, energy consumption, energy efficiency 

rating, free-standing / built-in feature, availability of no-frost system and of 

freezer).15  

Each observation is a product j in year t with information about the average 

consumer price and annual electricity consumption. Moreover, we observe the 

number of units sold and a set of product features such as size, whether it is a 

standard refrigerator or a combined refrigerator-freezer and indication of 

whether it has a separate freezing compartment that can store food at -18°C. 

We also know the product’s classification according to the EU energy label. 

Energy labeling is mandatory since 1995 for all refrigerators sold in the 

European Union. In our data, each product is assigned to a class from A++ 

(the most energy-efficient) to G (the least energy efficient). This rating does 

not capture the absolute energy consumption of the appliance, but its relative 

consumption across different classes.16  

We drop the following outliers: all products with less than 10 units of sales, 

and the 2.5% of products with the highest sales levels.17 We also drop the 

2.5% products with the largest and smallest capacity and energy consumption. 

Any product falling within at least one of these categories is dropped from the 

sample. 

                                                 

14 Note that a product that would be altered by manufacturers would be coded under a 
different series number, and would therefore have a different identifier in our dataset. 
15 Brand name and series numbers were not available for retailers’ own brands. For these 
products, identification is based on product features alone. This means that, with this method, 
two models from different retailers’ brand but with exactly the same product features cannot 
be properly distinguished. Therefore, observations for retailers’ brand appliances are dropped 
each time the same product features corresponds to various models of appliances for the same 
year. 
16 However, the EU label also displays, next to the rating, the energy consumption of the 
appliance in kWh per year. 
17 The disappearance of best-selling products from one year to the other could only be due to 
dataset incompleteness. 
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Summary statistics on product characteristics for the trimmed sample of 

observed, commercialized products are displayed in Table 1. It includes 4,928 

observations consisting of the commercialization of product j in year t. Table 2 

provides an overview of the distribution of prices and market shares across 

energy efficiency classes. Note that almost all products were rated A, B or C 

during the study period.18 

Electricity price statistics come from the UK Department of Energy and 

Climate Change (DECC, 2013). The UK experienced a surge in the electricity 

price by around 40% between 2002 and 2007. The price reached about 12 

pence per KWh by 2007. The increase in electricity prices was mostly due to a 

concomitant drastic increase in wholesale gas prices, which peaked in 2006. 

Gas is a major input in the UK electricity production market. Thus, electricity 

prices vary substantially over the 2002-2007 period.  

4. Results 

Table 3 gives the results of the dynamic probit model. They confirm that an 

increase in the electricity cost reduces the probability that the product is 

available on the market. Thus, highly energy-consuming products – energy-

inefficient products and large refrigerators – are more likely to exit the market 

when the electricity price increases. Likewise, a reduction in the selling price 

                                                 

18 A potential problem is that the data does not include information on energy efficiency 
policies that may have influenced market outcomes. However, there has been no change in the 
design of the labeling scheme or in the strictness of the regulatory standards during the sample 
period. Admittedly, the Energy Efficiency Commitment (EEC) scheme was enforced during 
the study period, offering the possibility for eligible households to get financial support for the 
purchase of energy efficient cold appliances. However, this policy had very limited impact on 
the refrigerator market. In practice, support mostly focused on energy efficient light bulbs and 
on home insulation. Lees (2008) reports that subsidized fridge-freezers by EEC have 
represented 0.43% of the market between 2005 and 2008. If we also include subsidies from 
local authorities and the Warm Front, subsidized appliances may have represented around 
1.5% of all cold appliances sold between 2005 and 2008. 
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of an appliance increases its probability of being kept in the market. This 

result is statistically significant at 1%.19  

Table 1: Summary statistics on product characteristics for 
commercialized products 

Variable Unit Mean 
Std 

deviation 
Refrigerator price real £ 429.3 310.3 

Energy consumption kWh/year 315.6 137.5 

Annual energy cost real £/year 31.6 14.1 

Height cm 143.8 42.4 

Width cm 60.2 10.3 

Total capacity (cooling + freezing) litres 259.6 113.31 

Freezing capacity litres 63.7 72.4 

Energy efficiency ratinga  2.47 0.85 

Share of combined refrigerators-freezers  0.55 - 

Share of built-in appliances  0.76 - 

Share of appliances with no-frost system  0.26 - 

Notes. Source: GfK, provided by Defra. Survey years: 2002-2007. 4,928 observations. a To 
obtain a numeric value for the energy efficiency rating (from “G” to “A++”), ratings were 
recoded with “A++” set equal to 0, “A+”=1, “A”=2 and so on up to “G”=8.  

Table 2: Price, number of products and average year of 
commercialization in the data, by energy efficiency class 

Energy efficiency 
rating 

Average price Number of 
observations 

Year of 
commercialization 

A++ 528.1 14 2006.3 

A+ 478.7 407 2006.2 

A 458.1 2886 2005.4 

B 400.7 1053 2004.3 

C 299.0 520 2003.4 

D 251.7 27 2002.6 

E 351.1 17 2003 

F 239.4 2 2003 

G 233.3 2 2004.5 

Notes. Source: GfK, made available by Defra. Survey years: 2002-2007. 4,928 observations.  

                                                 

19 The probit model correctly predicts 62.5% of all observations, or more precisely 74.6% of 
all 0’s (product is not commercialized) and 27.3% of all 1’s (product is commercialized). This 
is based on the assumption that products with a fitted probability over 0.5 are commercialized. 
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The other parameters have the expected signs. For example, path dependence 

is confirmed: the probability that a product is available in year t is higher if it 

was in the market in the year before. Conversely, a product available in 2002 

is more likely to be obsolete in future years and therefore to exit the market 

(i.e. �� is negative).  

Table 3: Dynamic panel data probit estimation of product availability 
based on Wooldridge (2005)  

Dependent variable Availability of product j: ���
∗  

The product was commercialized the year before (
) 0.6926*** 
(26.42) 

Imputed refrigerator price (�) -0.0016*** 
(6.01) 

Electricity costs ( �) -0.0489*** 
(4.84) 

The product was commercialized in 2002 (��) -0.3348*** 
(11.34) 

Non-redundant explanatory variables covering all time 
periods and including time-constant product features (��) 

Yes 

Year dummies Yes 
Observations 15,875 
Number of imputations for appliance prices 25 
Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity, clustered on 
products, and take into account uncertainty regarding the imputed values of appliance prices. 
Table 3 is estimated 25 times with different combinations of imputations for the product 
prices. The number of observations (15,875) corresponds to the full sample of products used 
in the dynamic probit estimation (3,175) times 5 years (from 2003 to 2007 since the 2002 data 
is used as the first lag). The number of observations is lower than the ones reported in the data 
table and used for the FE estimation for product prices. This is because we need observations 
to have non-missing information on all product features to be used in the panel data probit 
model. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively.  

Table 4 displays the results of the first-stage price equation. Instruments are 

found to be strong. The joint F-test of significance has a statistic equal to 

16.08. We find a statistically significant and negative coefficient for the 

electricity costs, suggesting that manufacturers buffer the increase in energy 

costs by reducing their product margins. For the average product in the 

sample, a £1 increase in energy costs translates into a £7 reduction in the 

refrigerator price. Considering that the lifetime of cold appliances is between 

12 and 15 years, this means that only about half of the increase in energy costs 
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translates into a reduction in the refrigerator price. This is consistent with 

economic literature, which says that consumers tend to underestimate the 

energy costs when they purchase domestic appliances (see Gillingham and 

Palmer, 2014, for a review on the energy efficiency gap). 

Table 4: Fixed effect regression of the price of appliances 

Dependent variable Ln(Price of product j – 27.52) 
Electricity costs -0.0178** 

(2.27) 
Implicit price at time t of a freestanding/build in 
washing machine of similar size 

0.0087 
(1.64) 

Implicit price at time t of a freestanding/build in 
freezer of similar size 

0.0224*** 
(3.21) 

Product fixed effects Yes 
Year dummies Yes 
Observations 4,928 

Notes. t-statistics in brackets. Standard errors are clustered on products. Results marked with 
*, ** and *** are statistically significant at 10%, 5% and 1%, respectively.  

5. Simulation of a 10% electricity price increase 

This section assesses the impact of an electricity price increase on the 

characteristics of the products commercialized on the market. The main 

objective is to assess the extent to which total energy consumption decreases. 

Moreover, we also want to identify the channels through which this potentially 

occurs.  

We chose to model a 10% increase in the price of electricity. This figure is an 

ad hoc value allowing the reader to easily compute elasticities to electricity 

prices. However, it also has some policy relevance. DECC (2014) estimates 

that the current cost of supporting home-grown, low-carbon sources of energy 

accounts for 5% of a household energy bill. However, most of the electricity 

price fluctuations in the UK relate to fluctuations in wholesale gas prices. 

We consider two scenarios: I) the Business-As-Usual (BAU) scenario as 

observed in the data; and II) a counterfactual scenario in which energy prices 

are 10% higher over the sample period. For each scenario, we compute the 
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predicted probabilities that each product j is available in year t. These 

probabilities are denoted �A��
B  and �A��

BB respectively, where the superscript 

indicates the scenario number.  

When calculating �A��
B  and �A��

BB, we take the dynamics of product entry and exit 

into account: a higher probability of exiting the market at time 2 − 1 impacts 

the probability that the product is still available at time 2. The relationship 

between �A��
C  and �A����

C  ∀ = ∈ FG; GGI is nonlinear and captured by the 

coefficient for the lagged dependent variable (
) in the dynamic probit model. 

We restrict the calculation of �A��
C  to 2003-2007 to avoid making "out of 

sample" predictions on the probability that product j is on the market at a later 

date. Furthermore, �A��
C  for 2002 cannot be calculated since it requires 

information on initial market conditions to make predictions from the dynamic 

probit model. We recurrently predict �A��
C  based on �A����

C  such that: 

�A��
C = �A����

C Ф��	
�����
∗ K�����

∗ = 1� + 	1 − �A����
C �Ф��	0|�����

∗ = 0� 

where Ф��	
�����
∗ � is the probability that product j is on the market at time t, 

depending on whether product j was on the market at time t -1 or not. We use 

the functional forms of Ф��(. ) that have been estimated with the dynamic 

probit model. That is, Ф�� = �	
L�����
∗ + �A��� +  �L��� + �M� + �M����

∗ + �M��� +

 M� + �̂�� where 
L, �A, �L, �M�, �M�, �MN,  M� , and �̂� are coefficient estimates. 

We also make recurrent predictions to calculate �A�� based on �A����. We 

therefore proceed as if we did not know the realized value of �����
∗ . This 

ensures that we model the effect of product entry and exit on market outcomes 

over more than one year. 

Last, we account for the indirect impact of the electricity costs that passes 

through the refrigerator price with the first-stage price equation. We can 

therefore compute the impact of higher energy costs on the price of 
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appliances, and from this the impact of lower refrigerator prices on the 

probability of commercialization.20 

Simulation results 

Table 5 presents the results of a first simulation where probabilities �A��
B  and �A��

BB 

are used to compute weighted values for the average energy consumption 

under each scenario. We find that a 10% rise in electricity prices reduces 

average energy consumption by 2%.21 

What is the composition of this reduction? As shown in Table 5, this energy 

reduction is partly due to a decrease in refrigerator capacity which decreases 

by 0.6%. However, the major contribution is the 1.6% reduction of specific 

energy consumption, that is, energy consumption by liter of capacity. This 

could signal the inclusion of more efficient technologies in new models. 

However, the table shows that this mostly occurs through a decrease in 

freezing capacity (remember that freezing uses more energy than cooling). 

As shown in the preceding section, electricity price shocks also affect 

refrigerator prices, and thereby energy consumption indirectly. Table 6 

actually shows that the average refrigerator price decreases by 3.6% in 

response to the 10% electricity price increase. This figure is net of two 

phenomena. On the one hand, manufacturers modify the set of products 

available in the market. This new offer includes products of higher quality that 

sell at a 2.5% higher price under the BAU scenario. On the other hand, they 

                                                 

20 In Appendix C, we account for both effects simultaneously. To do so, we run a dynamic 
probit model that does not control for the price of appliances. Therefore, the correlation 
between the price of appliances and electricity costs is captured by the electricity costs 
coefficient. Both methods display similar results: higher energy costs reduce the selling price 
of appliances and therefore soften the direct impact of energy costs on the likeliness that a 
product is commercialized. 
21 Note that this figure only considers the commercialization of the products. It does not 
consider the impact of electricity prices on the sales of commercialized models, which is 
analyzed in Cohen, Glachant and Soderberg (2017). Likewise, we are not computing the 
impact of the electricity price increase on the stock of appliances hold by UK households. 
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reduce their margins. On average, the price of a given product is 6.1% lower 

under scenario II compared to the BAU scenario. 

Table 5: Impact of the electricity price increase by 10% on average 
energy consumption, total capacity, freezing capacity, and energy labels 

of commercialized refrigerators (2003-2007)  

Predicted average values 
Scenario I 

Business as usual 

Scenario II 
10% electricity price 

increase 
Variation   

Energy consumption 
(kWh/year) 

311.4 305.1 -2.0% 

Total capacity (cooling + 
freezing) 
(litres) 

263.7 262.2 -0.6% 

Specific energy consumption 
(kWh/year/liters) 

1.18 1.16 -1.6% 

Freezing capacity  
(liters) 

63.8 61.5 -3.8% 

Energy efficiency label  
(scale 0 = A++, 8 = G) 

2.28 2.25 -1.2% 

Notes. The values for the business as usual scenario are predicted values. The values for the 
product actually commercialized are close to the averages predicted with the probit model. 
The average energy consumption is 315.6 kWh per year (vs. 311.4 kWh per year in the 
prediction) and the capacity is 259.7 litres (vs. 263.7 in the prediction). 

Based on these results, we predict that energy consumption would decrease by 

4% if the firms did not reduce refrigerator prices. Thus, seller price 

adjustments divide the energy savings by two. 

Table 6: The average price of commercialized products under both 
scenarios 

Price of commercialised products Average Variation 

Business as usual 440.3 £  

10% electricity price increase 424.4 £ -15.9 £ 
(-3.6%) 

∆ due to a change in the composition of the product 
portfolio (assuming no change in individual product prices) 

 +10.8 £ 
(+2.5%) 

∆ Change in the refrigerator price of each product  -26.7 £ 
(-6.1%) 

 

Last, we examine whether energy use variation is primarily due to the launch 

of new more energy-efficient models or to the exit of inefficient models. To do 
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so, we focus the analysis on two subsets of products: entering products defined 

as models that were not available at time t-1 and that are commercialized at 

time t in the BAU scenario. Exiting products are similarly defined as models 

commercialized at time t-1 that are no longer available at time t. Table 7 

shows no differences in the impact of electricity price increases on product 

availability: The variation in the availability probabilities of the two sets of 

products is roughly similar, slightly more than 10%. We however find that 

product exits tend to contribute more to energy savings. Again, these numbers 

suggest that the launch of new products embodying more efficient energy 

saving technologies is not the major determinant of the reduction in energy use 

since the disappearance of inefficient products contributes much to the change 

in the average energy consumption of commercialized appliances. 

Table 7: Estimated availability probabilities and average energy 
consumption of entering and exiting products  

 
BAU 

10% electricity 
price increase 

Variation  

Predicted availability probability  
   

Entering products 
0.36 0.32 -11.8% 

Exiting products 0.32 0.28 -13.2% 

Average energy consumption 
   

Entering products 
305.6 300.6 -1.6% 

Exiting products 313.8 306.5 -2.3% 

  

6. Conclusions 

Recent economic research has found that policy can influence the pace of 

climate-friendly innovation. However, innovation empirical studies mostly use 

patent data and do not directly measure the impact of induced innovation on 

the environmental performance of products. Using detailed data on the UK 

refrigerator market, we look at the effect of increased electricity prices on the 

commercialization of energy-efficient products.  
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We confirm that manufacturers adapt to higher energy prices by changing the 

portfolio of products that are available in the market. This change is not 

primarily driven by innovation of more energy efficient technologies, but by a 

reduction of freezing capacity. In addition, the exit of inefficient products 

contributes more than the launch of efficient products. 
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Appendix A: logit model of product commercialization  

As an alternative to Wooldridge’s (2005) dynamic probit model, we run a 

fixed effect logit model to predict commercialization. Results suggest a 

negative impact of energy costs on product commercialization.  

Table 8: Fixed effect logit model to estimate the impact of energy costs on 
product commercialization 

Independent variables  

Imputed appliance price (β) -0.0031*** 

(-7.77) 

Electricity costs ( γ) -0.1114*** 

(-7.42) 

Year dummies Yes 

Observations 18,996 

Number of imputations for appliance prices 25 

Notes. Standard errors take into account uncertainty regarding the imputed values of appliance 
prices. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively. 
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Appendix B: Construction of the instruments of the product 

offer equation  

To calculate the implicit price of the two attributes (capacity and built-in vs 

free-standing), a hedonic pricing model is used (see the results in Table 9). We 

run two regressions, one for freezers, and one for washing machines to capture 

the evolution of the price of each subcategory of refrigeration appliance. This 

is done by including year-‘category of appliance’ (large/small and built-

in/freestanding) specific fixed effects.  

In addition, we include product-specific fixed effects that control for all time-

invariant product features and therefore for any difference in the sample of 

appliances that we observe from one year to the next, and could be susceptible 

to bias the estimation of the evolution of the average price of the various 

subcategories of appliances. As explained previously, we also include brand-

specific time trends that control for the general development of brand-specific 

marketing strategies. 

We assign weights to each product j in our regressions. We do so to ensure 

that the regression results are representative of the market and to reduce the 

risk of measurement error on the average price of each model. The weights are 

identical for all of the observations of product j between 2002 and 2007, and 

correspond to the average of all of the sales registered by product j between 

2002 and 2007. 
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Table 9:  Hedonic regressions to construct the instruments (freezers and 

washing machines) 

Dependent variable 
Price of washing 

machines 

Price of built-in 
freezers 

Price of 
freestanding 

freezers 

By year, by category of 
appliance fixed effects 

 
 

 

Small, 2002  0 0 
-18.8481 
(-0.46) 

Small, 2003  
-42.5061*** 

(-3.11) 
-2.5749 
(-0.12) 

-18.4543 
(-0.42) 

Small, 2004  
-75.2039*** 

(-2.85) 
-11.508 
(-0.31) 

-5.8397 
(-0.11) 

Small, 2005  
-125.6751*** 

(-3.18) 
-16.0016 
(-0.29) 

-7.9437 
(-0.13) 

Small, 2006  
-159.7466*** 

(-3.05) 
-43.4277 

(-0.6) 
15.2585 

(0.2) 

Small, 2007  
-205.2927*** 

(-3.13) 
-38.6044 
(-0.45) 

19.0729 
(0.21) 

Large, 2002 
37.824 
(1.45) 

10.3909 
(0.24) 

8.3791 
(0.28) 

Large, 2003  
-3.9397 
(-0.12) 

1.2222 
(0.03) 

-2.8049 
(-0.08) 

Large, 2004  
-57.4207 
(-1.59) 

13.543 
(0.31) 

9.7592 
(0.21) 

Large, 2005  
-128.0074*** 

(-2.94) 
4.5595 
(0.08) 

17.6663 
(0.3) 

Large, 2006 
-174.3192*** 

(-3.18) 
12.0702 
(0.17) 

27.5309 
(0.38) 

Large, 2007  
-218.5002*** 

(-3.24) 
-14.9726 
(-0.18) 

29.2075 
(0.33) 

Fixed effects Yes Yes 

Brand-specific time trends Yes Yes 

R2 0.31 0.28 

Number of observations 1,637 851 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity and clustered on 
products. Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively. ‘Small’ means below sample median, ‘Large’ is above. Regression is weighted 
for each observation of product j by the total sales of product j over 2002-2007. The prices for 
built-in and freestanding freezers have been obtained from the same regression, where this 
feature is interacted with size and year of commercialization. 
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Appendix C: Dynamic probit model without controlling for the 

refrigerator price  

Here we estimate base model, using the probit estimation, except that it does 

not control for the price of appliances at time t. Therefore, the coefficient of 

the electricity cost is net of the effect of electricity costs on the price of 

appliances. The estimated coefficient is around half the coefficient of the 

baseline specification. Simulation results (in table 11) are almost identical to 

the ones displayed in the main part of the paper. This corroborates the 

accuracy of our approach, which accounts for the impact of higher energy 

prices on appliance prices, and subsequently for the impact of lower appliance 

prices on product commercialization.  

Table 10: Fixed effect regression of the refrigerator price 

Dependent variable Availability of product j: ���
∗  

The product was commercialized the year before (α) 0.7043*** 

(27.10) 

Imputed appliance price (β) - 

Electricity costs ( γ) -0.0228*** 

(3.07) 

The product was commercialized in 2002 (��) -0.3342*** 

(11.44) 

Non-redundant explanatory variables covering all 
time periods and including time-constant product 
features (��) 

Yes 

Year dummies Yes 

Observations 15,875 

Number of imputations for appliance prices: the 
average of inputted values are included in (��). 

25 

Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity, clustered on 
products, and take into account uncertainty regarding the imputed values of appliance prices. 
Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively.  
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Table 11: Impact of a 10% electricity price increase on product offer 

Predicted average values Business as usual 10% electricity 
price increase 

Impact  

Energy consumption 
(kWh/year) 

303.1 289.7 -13.4 
(-4.4%) 

Total capacity (cooling + 
freezing) 
(litres) 

259.7 260.1 +0.4 
(+0.2%) 

Freezing capacity  
(litres) 

63.7 52.9 -10.8 
(-17.0%) 

Energy efficiency label  
(scale 0 = A++, 8 = G) 

2.31 2.17 -0.15 
(-6.4%) 

Notes: relative impacts in brackets in fourth column. 
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Appendix D: Using expected electricity prices based on futures 

in the wholesale market and the probit model 

In the alternative specification below, we compute retail price expectations 

based on the futures prices from the wholesale electricity market. To do so, we 

reproduce the methodology described in Cohen, Glachant and Soderberg 

(2017). We use data on UK wholesale electricity futures from the Bloomberg 

futures database: the price of Gregorian baseload forwards from the 1st to the 

4th following winter/summer seasons, as registered during OTC operations 

and gathered by GFI Group Limited. These prices are available on a monthly 

basis from 2002 to 2007. We also use data for spot prices of UK Power. The 

data was extracted from Bloomberg’s reference and settlement data.  

We report the results for the dynamic panel data probit model with the 

electricity price expectations below. Results are similar to the base model. 

Table 12: Dynamic panel data probit estimation using expected prices, 

based on futures from the UK wholesale electricity market 

Dependent variable Availability of product j: ���
∗  

The product was commercialized the year before (
) 0.6934*** 
(26.45) 

Imputed refrigerator price (�) -0.0015*** 
(5.94) 

Expected Electricity costs ( �) -0.0308*** 
(4.52) 

The product was commercialized in 2002 (��) -0.3348*** 
(11.35) 

Non-redundant explanatory variables covering all time 
periods and including time-constant product features (��) 

Yes 

Year dummies Yes 
Observations 15,875 
Number of imputations for appliance prices 25 
Notes. t-statistics in brackets. Standard errors are robust to heteroskedasticity, clustered on 
products, and take into account uncertainty regarding the imputed values of appliance prices. 
Results marked with *, ** and *** are statistically significant at 10%, 5% and 1%, 
respectively.  

 


